
COP 4600: Intro To OS (Uni-processor Scheduling Page 1 © Dr. Mark Llewellyn

COP 4600 – Summer 2013

Introduction To Operating Systems

Uni-processor Scheduling

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cop4600/sum2013

COP 4600: Intro To OS (Uni-processor Scheduling Page 2 © Dr. Mark Llewellyn

Uni-processor Scheduling

• In a multiprogramming system, multiple processes

exist concurrently in main memory. Each process

alternates between using the processor and waiting

for some event to occur, such as the completion of

I/O.

• The key to multiprogramming is scheduling.

• The goals of scheduling are:

1. Assign processes to be executed by the processor(s)

2. Improve response time

3. Improve throughput

4. Increase processor efficiency

COP 4600: Intro To OS (Uni-processor Scheduling Page 3 © Dr. Mark Llewellyn

Types of Scheduling

There are typically four different types of scheduling involved.

• Long-term scheduling: The decision to add to the pool of

processes to be executed.

• Medium-term scheduling: The decision to add to the number

of processes that are partially or fully in main memory.

• Short-term scheduling (dispatcher): The decision as to which

available process will be executed by the processor.

• I/O scheduling: The decision as to which process’s pending

I/O request will be handled by an available I/O device. (We’ll

defer this type of scheduling until we discuss I/O management

later in the course.)

COP 4600: Intro To OS (Uni-processor Scheduling Page 4 © Dr. Mark Llewellyn

Scheduling and Process State Transitions

COP 4600: Intro To OS (Uni-processor Scheduling Page 5 © Dr. Mark Llewellyn

Levels of Scheduling

This diagram reorganizes the

state transition diagram to

suggest the nesting of

scheduling functions.

Scheduling affects the

performance of the system

because it determines which

processes will wait and which

will progress. This is

illustrated by the next diagram.

COP 4600: Intro To OS (Uni-processor Scheduling Page 6 © Dr. Mark Llewellyn

Queuing Diagram For Scheduling

COP 4600: Intro To OS (Uni-processor Scheduling Page 7 © Dr. Mark Llewellyn

Long-Term Scheduling

• Determines which programs are admitted to the system for

processing

• Long term scheduling controls the degree of

multiprogramming

• The decision as to when to create a new process is general

driven by the desired degree of multiprogramming. The more

processes that are created, the smaller is the percentage of time

each process can be executed (i.e., more processes are

competing for the same amount of processor time).

• Thus, the long term scheduler may limit the degree of

multiprogramming to provide satisfactory service to the

current set of processes.

COP 4600: Intro To OS (Uni-processor Scheduling Page 8 © Dr. Mark Llewellyn

Long-Term Scheduling (cont.)

• The decision as to which job to admit next can be based on a

simple first-come-first-served basis, or it can be based on a much

more elaborate protocol to assist in the management of system

performance.

• Many different criteria can be used including:

– Priority

– Expected execution time

– I/O requirements

– Overall system balance (CPU bound versus I/O bound processes)

• Note: for time sharing systems, process creation will occur

when a user attempts to connect to the system. Time sharing

users are not queued up and kept waiting, rather all comers are

accepted until the system reaches some saturation point.

COP 4600: Intro To OS (Uni-processor Scheduling Page 9 © Dr. Mark Llewellyn

Medium-Term Scheduling

• Part of the swapping function.

• Typically the swapping-in decision is based on the

need to manage the degree of multiprogramming.

• On a system that does not use virtual memory,

memory management also becomes an issue that must

be addressed by the medium-term scheduler. This

means that the swapping-in decision must consider

the memory requirements of the swapped-out

process.

COP 4600: Intro To OS (Uni-processor Scheduling Page 10 © Dr. Mark Llewellyn

Short-Term Scheduling

• In terms of frequency of execution, the long-term

scheduler executes relatively infrequently and makes

the coarse-grained decision of whether or not to take

on a new process and which one to take.

• The medium-term scheduler is executed somewhat

more frequently to make a swapping decision.

• The short-term scheduler is also known as the

dispatcher, executes the most frequently and makes

the fine-grained decision of which process to execute

next.

COP 4600: Intro To OS (Uni-processor Scheduling Page 11 © Dr. Mark Llewellyn

Short-Term Scheduling (cont.)

• The short-term scheduler is invoked when an event

occurs that may lead to the blocking of the current

process or that may provide and opportunity to

preempt a currently running process in favor of

another.

• Example of such events include:

– Clock interrupts

– I/O interrupts

– Operating system calls

– Signals (semaphores)

COP 4600: Intro To OS (Uni-processor Scheduling Page 12 © Dr. Mark Llewellyn

Short-Term Scheduling (cont.)

• The main objective of short-term scheduling is to

allocate processor time in such a way as to optimize

one or more aspects of the systems behavior.

• The commonly used criteria can be categorized into

two broad dimensions.

1. We can make the distinction between user-oriented

and system-oriented criteria.

2. We can also make the distinction between criteria

which are performance related and those that are

not directly performance related.

COP 4600: Intro To OS (Uni-processor Scheduling Page 13 © Dr. Mark Llewellyn

Short-Term Scheduling Criteria

• User-oriented (perceived by the user or process)

– Response Time in an interactive system
• Elapsed time between the submission of a request until there is

output.

• For example, a threshold of 2 seconds may be defined such that the
goal of the scheduling is to maximize the number of users who
experience an average response time of 2 seconds or less.

• System-oriented
– Effective and efficient utilization of the processor

• An example is throughput, which is the rate at which processes are
completed. Focus is clearly on system performance rather than
service provided to the user, although the users may also benefit
from increased throughput.

COP 4600: Intro To OS (Uni-processor Scheduling Page 14 © Dr. Mark Llewellyn

Short-Term Scheduling Criteria

• Performance-related

– Quantitative

– Readily measurable and analyzable.

– Examples: response time and throughput.

• Non-performance related

– Qualitative

– Not readily measurable.

– Example is predictability. Service provided to users

exhibits the same characteristics over time independent of

other work being performed by the system.

COP 4600: Intro To OS (Uni-processor Scheduling Page 15 © Dr. Mark Llewellyn

Summary of Scheduling Criteria

COP 4600: Intro To OS (Uni-processor Scheduling Page 16 © Dr. Mark Llewellyn

Summary of Scheduling Criteria (cont.)

COP 4600: Intro To OS (Uni-processor Scheduling Page 17 © Dr. Mark Llewellyn

The Use Of Priorities

• In many systems, each process is assigned a priority

and the scheduler will always choose a process of

higher priority over one of lower priority

• Have multiple ready queues (RQ #) to represent each

level of priority

• One problem with a pure priority scheduling scheme

is that lower-priority processes may suffer starvation.

This happens when there is always a steady supply of

higher-priority processes.

– To prevent this it is possible to allow a process to change

its priority based on its age or execution history.

COP 4600: Intro To OS (Uni-processor Scheduling Page 18 © Dr. Mark Llewellyn

Priority Queuing

COP 4600: Intro To OS (Uni-processor Scheduling Page 19 © Dr. Mark Llewellyn

Alternative Scheduling Protocols

• The table on the following page illustrates some of the
possible scheduling protocols.

• The selection function determines which process, among ready
processes, is selected next for execution. This function may be
based on priority, resource requirements, or the execution
characteristics of the process. In the latter case, three quantities
are significant:

– w = time spent it system so far, waiting and executing

– e = time spent in execution so far

– s = total service time required by the process, including e:
 generally this quantity is estimated.

• For example, the selection function max[w] indicates a first-
come-first-served protocol.

COP 4600: Intro To OS (Uni-processor Scheduling Page 20 © Dr. Mark Llewellyn

Characteristics of Various Scheduling Protocols

See notes

FCFS = first come first served SPN = shortest process next

SRT = shortest remaining time

HRRN = highest response ratio next

COP 4600: Intro To OS (Uni-processor Scheduling Page 21 © Dr. Mark Llewellyn

Decision Mode

• The decision mode specifies the instants in time at which the

selection function is applied. There are two general

categories:

• Non-preemptive

– Once a process is in the running state, it will continue until (a) it

terminates or (b) blocks itself to wait for I/O or request some

operating system service.

• Preemptive

– Currently running process may be interrupted and moved to the

Ready state by the operating system.

– The decision to preempt may be performed when a new process

arrives; when an interrupt occurs that places a blocked process in

the Ready state, or periodically, based on a clock interrupt.

COP 4600: Intro To OS (Uni-processor Scheduling Page 22 © Dr. Mark Llewellyn

Decision Mode (cont.)

• Preemptive protocols incur greater overhead than non-

preemptive ones but will in general provide better service

to the total population of processes, because they prevent

any one process from monopolizing the processor for

very long.

• In addition, the cost of preemption may be kept relatively

low by using efficient process-switching mechanisms

(with hardware support) and by providing a large main

memory to key a high percentage of programs in main

memory.

COP 4600: Intro To OS (Uni-processor Scheduling Page 23 © Dr. Mark Llewellyn

Process Scheduling Example

As we examine the various scheduling protocols we’ll use this set of

processes as a running example.

We can think of these as batch jobs with the service time representing the

total execution time required.

Alternatively, we can think of these as ongoing processes that require

alternate use of the processor and I/O in repetitive fashion. In this case, the

service time represents the processor time required in one cycle.

In either case, in terms of a queuing model, this quantity corresponds to the

service time.

COP 4600: Intro To OS (Uni-processor Scheduling Page 24 © Dr. Mark Llewellyn

First-Come-First-Served (FCFS)

• The FCFS scheduling policy is the simplest scheduling algorithm

we will examine.

• The FCFS protocol specifies that the first process to request the

CPU is allocated to the CPU first.

• The FCFS protocol maintains the ready list as a straight queue

(i.e., not a priority queue but a FIFO structure).

• The FCFS protocol is non-preemptive. Once a process is

allocated to the CPU it keeps the CPU until it terminates or

requests I/O (interrupt).

• While the FCFS protocol is easy to implement and oversee – it

does not lead to a minimization of the average waiting time. The

following example illustrates how the average waiting time is

computed.

COP 4600: Intro To OS (Uni-processor Scheduling Page 25 © Dr. Mark Llewellyn

First-Come-First-Served (FCFS)

• The waiting time (w) for process A = 0, for B = 1, C = 5, D= 7 and E = 10

• The average waiting time is then: (0 + 1 + 5 + 7 + 10)/ 5 = 23/5 = 4.6

• The turnaround time (Tr) for process A = 3, B = 7, C = 9, D = 12, and E = 12

• The average turnaround time is then (3 + 7 + 9 + 12 + 12)/5 = 43/5 = 8.6

• Tr/Ts: A = 3/3 = 1, B = 7/6 = 1.17. C = 9/4 = 2.25, D = 12/5 = 2.4, E = 12/2 = 6

• The average for Tr/Ts: (1 + 1.17 + 2.25 + 2.4 + 6)/5 = 2.56

A

B

C

D

E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The Gantt chart

notation:

Gray shading means

process is waiting

Bright color means

process is executing

COP 4600: Intro To OS (Uni-processor Scheduling Page 26 © Dr. Mark Llewellyn

First-Come-First-Served (FCFS)

• The average waiting time under a FCFS protocol is generally not

minimal. Further, if the variance in CPU burst time is large, then

the average waiting time will vary drastically depending upon the

order in which the processes arrive for service in the ready queue.

The following example illustrates the variance in the average

waiting time of this protocol.

• Suppose the processes arrive in the order B, D, C, A, E. This

causes their waiting times to become: B = 0, D = 4, C = 7, A = 9,

E = 10. The average waiting time is then: (0 + 4 + 7 + 9 + 10)/5 =

30/5 = 6. Similarly the turnaround times become: B = 6, D = 11,

A= 15, C = 18, and E = 20, with the average turnaround time

being (6 + 11 + 14 + 18 + 20)/5 = 65/9 = 13.8.

COP 4600: Intro To OS (Uni-processor Scheduling Page 27 © Dr. Mark Llewellyn

First-Come-First-Served (FCFS)

• The FCFS protocol performs poorly in terms of maximizing the utilization
of the CPU and the various I/O devices.

– Consider the following scenario of one CPU bound process and many I/O
bound processes currently in the system. Once the CPU bound process is
allocated to the CPU it will keep it. During this time all of the I/O bound jobs
will finish their I/O and renter the ready queue to await their next turn on the
CPU. While the I/O bound processes wait in the ready queue all of the I/O
devices are idle. Eventually, the CPU bound process will finish its current
CPU burst and requests I/O. Now all of the I/O bound processes in the ready
queue will execute their CPU burst very quickly and move back into their I/O
queues. At this point the CPU remains idle (as all processes are currently
awaiting I/O completions. At some point the CPU bound process will reenter
the CPU and the process will repeat as the I/O bound jobs will finish and arrive
back in the ready queue. This is a convoy effect as all the I/O bound and short
CPU processes wait for one CPU bound job to complete.

– The overall effect is to lower both CPU utilization and I/O device utilization
while increasing the average waiting time in the system for all processes
(except perhaps for the one CPU bound process).

COP 4600: Intro To OS (Uni-processor Scheduling Page 28 © Dr. Mark Llewellyn

First-Come-First-Served (FCFS)

• A short process may have to wait a very long time before it

can execute.

• Favors CPU-bound processes

– I/O processes have to wait until CPU-bound process completes

• The FCFS protocol is particularly unsuited to time-shared

systems where the average response time begins to skyrocket

if a single process is allowed to control the CPU for an

extended period.

• In general, FCFS performs much better for long processes than

short processes. This is illustrated by the example on the

following page.

COP 4600: Intro To OS (Uni-processor Scheduling Page 29 © Dr. Mark Llewellyn

First-Come-First-Served (FCFS)

Process Arrival

Time

Service

Time (Ts)

Start

Time

Finish

Time

Turnaround

Time (Tr)

Tr/Ts

A 0 1 0 1 1 1

B 1 100 1 101 100 1

C 2 1 101 102 100 100

D 3 100 102 202 199 1.99

A

B

C

D

0 1 2 3 . . . 100 101 102 . . . 202

The normalized turnaround time for C

is way out of line compared to the other

processes: the total time it is in the

system is 100 times the required

processing time. This will happen

whenever a short process arrives just

after a long process. On the other

hand, even in this extreme case, long

processes do not do too badly.

Process D has a turnaround time that

is almost double that of C, but its

normalized residence time is under 2.0.

COP 4600: Intro To OS (Uni-processor Scheduling Page 30 © Dr. Mark Llewellyn

First-Come-First-Served (FCFS)

• FCFS is not an attractive alternative on its own for a uni-

processor system.

• It is sometimes combined with a priority scheme to provide an

effective scheduler. In this case, the scheduler maintains a

number of queues, one for each priority level, and dispatch

within each queue on a FCFS basis.

• This is a common technique employed with feedback systems.

COP 4600: Intro To OS (Uni-processor Scheduling Page 31 © Dr. Mark Llewellyn

Round-Robin

• The round-robin protocol is a straightforward way to

reduce the penalty that short jobs suffer under FCFS.

• Round-robin uses preemption based on a clock. A

clock interrupt signal is generated at periodic

intervals. When the interrupt occurs, the currently

running process is placed in the ready queue, and the

next ready job is selected on a FCFS basis.

• This technique is also known as time-slicing, because

each process is given a slice of time before being

preempted.

COP 4600: Intro To OS (Uni-processor Scheduling Page 32 © Dr. Mark Llewellyn

Round-Robin

• With round-robin, the principal design issue is the length of
the time quantum, or slice, to be used.

• If the quantum is very short, then short processes will move
through the system relatively quickly.

• On the other hand, there is processing overhead involved in
handling the clock interrupt and performing the scheduling
and dispatching functions.

• This implies that very short time quantum should be avoided.

• One useful guideline is that the time quantum should be
slightly greater than the time required for a typical interaction
or process function. If it is less, then most processes will
require at least two quanta. (See next slide.)

COP 4600: Intro To OS (Uni-processor Scheduling Page 33 © Dr. Mark Llewellyn

Effect of Size on Preemption

Time Quantum

Figure (a) shows the effect

when the time quantum is

larger than the typical

interaction time. Typical

processes complete in one

time quantum.

Figure (b) illustrates the case

when the time quantum is

smaller than the typical

interaction time. Typical

processes require at least two

time quantum.

COP 4600: Intro To OS (Uni-processor Scheduling Page 34 © Dr. Mark Llewellyn

Round-Robin (quantum = 1)

A

B

C

D

E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

D

E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

COP 4600: Intro To OS (Uni-processor Scheduling Page 35 © Dr. Mark Llewellyn

Round-Robin (quantum = 1)

A

B

C

D

E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

D

E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

COP 4600: Intro To OS (Uni-processor Scheduling Page 36 © Dr. Mark Llewellyn

Round-Robin (quantum = 1)

A

B

C

D

E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

D

E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

COP 4600: Intro To OS (Uni-processor Scheduling Page 37 © Dr. Mark Llewellyn

Round-Robin (quantum = 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

D

E

A

B

C

D

E

COP 4600: Intro To OS (Uni-processor Scheduling Page 38 © Dr. Mark Llewellyn

Round-Robin (quantum = 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

D

E

A

B

C

D

E

COP 4600: Intro To OS (Uni-processor Scheduling Page 39 © Dr. Mark Llewellyn

Round-Robin (quantum = 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

D

E

A

B

C

D

E

COP 4600: Intro To OS (Uni-processor Scheduling Page 40 © Dr. Mark Llewellyn

Round-Robin (quantum = 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

D

E

A

B

C

D

E

COP 4600: Intro To OS (Uni-processor Scheduling Page 41 © Dr. Mark Llewellyn

Round-Robin (quantum = 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

D

E

A

B

C

D

E

COP 4600: Intro To OS (Uni-processor Scheduling Page 42 © Dr. Mark Llewellyn

Round-Robin (quantum = 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

D

E

A

B

C

D

E

COP 4600: Intro To OS (Uni-processor Scheduling Page 43 © Dr. Mark Llewellyn

Round-Robin (quantum = 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

D

E

A

B

C

D

E

COP 4600: Intro To OS (Uni-processor Scheduling Page 44 © Dr. Mark Llewellyn

Time Queue (R- - F) Process In CPU Action

0 A A A arrives and gets CPU

1 A

2 A, B B B arrives, A loses CPU

3 B, A A A completes (Tr = 4)

4 C, B B C arrives, B gets CPU

5 B, C C

6 C, D, B B D arrives

7 B, C, D D

8 D, E, B, C C E arrives

9 C, D, E, B B

10 B, C, D, E E

11 E, B, C, D D

12 D, E, B, C C

13 C, D, E, B B

14 B, C, D, E E E completes (Tr = 7)

15 B, C, D D

16 D, B, C C C completes (Tr = 13)

17 D, B B B completes (Tr = 16)

18 D D

19 D D completes (Tr = 14)

D
ia

g
ra

m
 I

llu
s
tr

a
ti
n
g
 R

o
u
n
d

-R
o
b
in

 q
u
e
u
e
 a

n
d

P
ro

c
e
s
s
o
r

a
llo

c
a
ti
o
n
 f
o
r

q
u
a
n
tu

m
 =

 1

COP 4600: Intro To OS (Uni-processor Scheduling Page 45 © Dr. Mark Llewellyn

Round-Robin (quantum = 1)

• Waiting time of process A = 1, B = 10, C = 9, D = 9, and E = 5

• Average waiting time: (1 + 10 + 9 + 9 + 5)/5 = 34/5 = 6.8

• Turnaround time (Tr): A = 4, B = 16, C = 13, D = 14, and E = 7

• Average turnaround time: (4 + 16 + 13 + 14 + 7)/5 = 54/5 = 10.8

• Tr/Ts: A = 4/3=1.33, B = 16/6=2.66, C = 13/4=3.25, D = 14/5=2.8, E = 7/2 = 3.5

• Average Tr/Ts: (1.33 + 2.66 + 3.25 + 2.8 + 3.5)/5 = 13.54/5= 2.71

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

D

E

COP 4600: Intro To OS (Uni-processor Scheduling Page 46 © Dr. Mark Llewellyn

Round-Robin (quantum = 4)

• Waiting time of process A = 0, B = 9, C = 3, D = 9, and E = 9

• Average waiting time: (0 + 10 + 7 + 9 + 7)/5 = 33/5 = 6.6

• Turnaround time (Tr): A = 3, B = 15, C = 7, D = 14, and E = 11

• Average turnaround time: (3 + 15 + 7 + 14 + 11)/5 = 50/5 = 10.0

• Tr/Ts: A = 3/3=1.0, B = 15/6=2.5, C = 7/4=1.75, D = 14/5=2.8, E = 11/2 = 5.5

• Average Tr/Ts: (1.0 + 2.5 + 1.75 + 2.8 + 5.5)/5 = 13.55/5 = 2.71

A

B

C

D

E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

COP 4600: Intro To OS (Uni-processor Scheduling Page 47 © Dr. Mark Llewellyn

Round-Robin
• Round-robin is particularly effective in a general-purpose time-

sharing system or transaction processing system.

• One drawback to round-robin is its relative treatment of CPU-
bound and I/O-bound processes. Generally, an I/O bound process
has a shorter processor burst (the amount of time spent executing
between I/O operations) than a CPU-bound process.

• With a mix of CPU and I/O bound processes the following will
happen: An I/O bound process uses the CPU for a short period of
time and is then blocked for I/O; it waits for the I/O to complete
then joins the ready queue. On the other hand, a CPU bound
process generally uses its entire quantum while executing and
immediately returns to the ready queue. Thus, CPU bound
processes tend to receive an unfair portion of processor time, which
results in poor performance for I/O bound processes., inefficient
use of I/O devices, and an increase in the variance of response time.

COP 4600: Intro To OS (Uni-processor Scheduling Page 48 © Dr. Mark Llewellyn

Round-Robin
• One possible solution to this problem that has been developed is

referred to as a virtual round-robin (VRR) which avoids this
unfairness to I/O bound processes.

• In VRR, new processes arrive and join the ready queue, which is
managed on a FCFS basis. When a running process times out, it is
returned to the ready queue. When a process is blocked for I/O, it
joins an I/O queue. (So far, this method is no different from what
we’ve seen previously).

• The new feature is an FCFS auxiliary queue to which processes are
moved after being released from an I/O block.

• When a dispatching decision is to be made, processes in the
auxiliary queue are given preference over those in the main ready
queue. When a process is dispatched from the auxiliary queue, it
runs no longer than a time equal to the basic time quantum minus
the total time spent running since it was last selected from the main
ready queue. This method is illustrated on the next slide.

COP 4600: Intro To OS (Uni-processor Scheduling Page 49 © Dr. Mark Llewellyn

Set-up For Virtual Round-Robin

COP 4600: Intro To OS (Uni-processor Scheduling Page 50 © Dr. Mark Llewellyn

Shortest Process Next (SPN)

• Shortest Process Nest (SPN) is another approach to

reduce the bias in favor of long processes that is

inherent with FCFS.

• SPN is non-preemptive.

• The process with the shortest expected processing

time is selected next by the scheduler. Thus, a short

process job will jump to the head of the queue

passing longer jobs.

COP 4600: Intro To OS (Uni-processor Scheduling Page 51 © Dr. Mark Llewellyn

Shortest Process Next

• Waiting times: A = 0, B = 1, C = 7, D = 9, E = 1

• Average waiting time = (0 + 1 + 7 + 9 + 1)/5 = 3.6

• Turnaround times (Tr): A = 3, B = 7, C = 11, D= 14, E = 3

• Average turnaround time = (3 + 7 + 11 + 14 + 3)/5 = 38/5 = 7.6

• Tr/Ts: A = 3/3 = 1, B = 7/6 = 1.17, C = 11/4 = 2.75, D = 14/5 = 2.8, E = 3/2 = 1.5

• Average Tr/Ts = (1 + 1.17 + 2.75 + 2.8 + 1.5)/5 = 9.22/5 = 1.84

Notice that Process E receives

service much sooner under SPN

than it did under FCFS.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

D

E

COP 4600: Intro To OS (Uni-processor Scheduling Page 52 © Dr. Mark Llewellyn

Shortest Process Next

• In terms of response time, overall performance has improved

under this protocol. However, the variability of response times

has also increased, especially for longer processes, and thus

predictability of longer processes is reduced.

• One difficulty with the SPN protocol is the need to know or

accurately predict the required processing time for each process.

• If the estimated time for a process is not correct, the operating

system may abort it.

• Possibility of starvation for longer processes occurs if there is a

steady supply of short processes.

• Not favored for time-sharing or transaction processing

environments due to the lack of preemption.

COP 4600: Intro To OS (Uni-processor Scheduling Page 53 © Dr. Mark Llewellyn

Shortest Remaining Time (SRT)

• The Shortest Remaining Time (SRT) protocol is a preemptive

version of SPN.

• In SRT, the scheduler always chooses the process that has the

shortest expected remaining processing time.

• When a new process joins the ready queue, it may have a shorter

remaining time than the currently running process. If this occurs,

the scheduler may preempt the current process when the new

process arrives.

• As with SPN, the SRT scheduler must have an estimate of the

processing time in order to perform the selection function.

• Again, there is the possibility of starvation for longer processes.

COP 4600: Intro To OS (Uni-processor Scheduling Page 54 © Dr. Mark Llewellyn

Shortest Remaining Time (SRT)

• SRT does not have the bias in favor of long processes that we

saw with FCFS.

• Unlike RR, no additional interrupts are generated, which reduces

the overhead.

• On the other hand, elapsed service time must be recorded which

contributes to overhead.

• SRT typically gives superior turnaround time performance when

compared to SPN, because a short job is given immediate

preference to a running longer job.

• Note in the example on the next page that the three shortest

processes (A, C, and E) all receive immediate service, which

produces a normalized turnaround time of 1.0 for each.

COP 4600: Intro To OS (Uni-processor Scheduling Page 55 © Dr. Mark Llewellyn

Shortest Remaining Time

• Waiting times: A = 0, B = 7, C = 0, D = 9, E = 0

• Average waiting time = (0 + 7 + 0 + 9 + 0)/5 = 16/5 = 3.2

• Turnaround times (Tr): A = 3, B = 13, C = 4, D= 14, E = 2

• Average turnaround time = (3 + 13 + 4 + 14 + 2)/5 = 36/5 = 7.2

• Tr/Ts: A = 3/3 = 1, B = 13/6 = 2.17, C = 4/4 = 1, D = 14/5 = 2.8, E = 2/2 = 1

• Average Tr/Ts = (1 + 2.17 + 1 + 2.8 + 1)/5 = 7.97/5 = 1.59

A

B

C

D

E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

COP 4600: Intro To OS (Uni-processor Scheduling Page 56 © Dr. Mark Llewellyn

Highest Response Ratio Next (HRRN)

• Highest Response Ratio Next (HRRN) uses the normalized

turnaround time, which is the ratio Tr/Ts calculated as:

• HRRN attempts to minimize the average of this ratio over all

processes.

• In general, it is not possible to know in advance what the exact

service time will be, but it can be approximated, based either on

past history or some input from the user or a configuration

manager.

• The scheduler’s decision is now determined as follows: when the

current process completes or is blocked, choose the ready process

with the greatest value of this ratio.

time waiting
response ratio S

S

T

T




COP 4600: Intro To OS (Uni-processor Scheduling Page 57 © Dr. Mark Llewellyn

Highest Response Ratio Next (HRRN)

• This approach is attractive because it accounts for the age of the

process.

• While shorter jobs are favored (a smaller denominator results in a

larger ratio), aging without service increases the ratio (since Tr

gets larger) so that a longer process will eventually get past

competing shorter jobs.

COP 4600: Intro To OS (Uni-processor Scheduling Page 58 © Dr. Mark Llewellyn

Highest Response Ratio Next (HRRN)

• Waiting times: A = 0, B = 1, C = 5, D = 9, E = 5

• Average waiting time = (0 + 1 + 5 + 9 + 5)/5 = 19/5 = 3.8

• Turnaround times (Tr): A = 3, B = 7, C = 9, D= 14, E = 7

• Average turnaround time = (3 + 7 + 9 + 14 + 7)/5 = 40/5 = 8.0

• Tr/Ts: A = 3/3 = 1, B = 7/6 = 1.17, C = 9/4 = 2.25, D = 14/5 = 2.8, E = 7/2 = 3.5

• Average Tr/Ts = (1 + 1.17 + 2.25 + 2.8 + 3.5)/5 = 10.72/5 = 2.14

time spent waiting + expected service time

expected service time

A

B

C

D

E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

At time = 3, only process B

is dispatchable, so HRRN

is not calculated.

At time 9, processes C, D,

and E are all dispatchable,

so HRRNs are calculated

as:

C = (5+4)/4 = 2.25

D = (3+5)/5 = 1.6

E = (1+2)/2 = 1.5

So C is dispatched.

At time 13, processes D

and E are dispatchable, so

HRRNs are calculated as:

D = (7+5)/5 = 2.4

E = (5+2)/2 = 3.5

So E is dispatched.

COP 4600: Intro To OS (Uni-processor Scheduling Page 59 © Dr. Mark Llewellyn

Feedback Techniques (FB)

• If the scheduler has no way of knowing or estimating with any

degree of accuracy the relative length of the various processes it

may schedule, then none of SPN, SRT, or HRRN can be used.

• Another technique for establishing a preference for shorter jobs is

to penalize jobs that have been running longer. In other words, if

the scheduler cannot focus on the time remaining to execute, then

let it focus on the time spent in execution so far.

• The mechanism for doing this is as follows:

COP 4600: Intro To OS (Uni-processor Scheduling Page 60 © Dr. Mark Llewellyn

Feedback Techniques

• Scheduling is done on a preemptive basis (assuming some time

quantum), and a dynamic priority mechanism is applied.

– When a process first enters the system, it is placed in RQ0 (see

diagram on next page).

– After its first preemption, when it returns to the ready state, it is

placed in RQ1 (next lowest priority).

– Each subsequent time that it is preempted, it is demoted to the next

lower priority queue.

– Within each priority queue, except for the lowest level queue, a

simple FCFS mechanism is used. Once in the lowest level queue a

process cannot have a lower priority so it is repeatedly returned to

this queue until it completes execution. So this queue is handled in

round-robin fashion.

COP 4600: Intro To OS (Uni-processor Scheduling Page 61 © Dr. Mark Llewellyn

Feedback Techniques

COP 4600: Intro To OS (Uni-processor Scheduling Page 62 © Dr. Mark Llewellyn

Feedback Techniques

• Short processes will complete quickly, without moving very far

down the hierarchy of ready queues.

• A longer process will gradually drift down the priority queue

hierarchy.

• Thus newer shorter processes are favored over older longer

processes.

• There are a number of variations on the feedback protocol. In the

simplest case, preemption is performed in the same fashion as for

round-robin, i.e., at periodic intervals. (This is shown in the

example on page 63 for a time quantum of 1.)

COP 4600: Intro To OS (Uni-processor Scheduling Page 63 © Dr. Mark Llewellyn

Feedback Techniques
• For the example set of processes assuming a time quantum of 1

and 3 levels of feedback queues, we would have the following

situation:

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

RQ0 A B C D E

RQ1 A B,A B C,B C D,C D E,D E

RQ2 B B C,B C,B D,C,B D, C B, D C, B D, C B, D B D B

Dispatched A A B A C B D C E D E B C D B C D B D B

Finished –

leaves

queue

A E C D B

COP 4600: Intro To OS (Uni-processor Scheduling Page 64 © Dr. Mark Llewellyn

Feedback Techniques
• For the example set of processes assuming a time quantum of 1 and 3

queue levels with no feedback if only single ready process, we would have

the following situation (green CPU cell indicates process ends):

Time

interval
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15

RQ0 A A B C D E

RQ1 A B, A B C,B C D,C D E,D E

RQ2 B B C,B C,B D,C,B D,C B,D C,B D,C

CPU A A B A C B D C E D E B C D B

Time

interval
15-16 16-17 17-18 18-19 19-20

RQ0

RQ1

RQ2 B,D B D B

CPU C D B D B

COP 4600: Intro To OS (Uni-processor Scheduling Page 65 © Dr. Mark Llewellyn

Feedback

Feedback Techniques

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

D

E

Time quantum = 1 for all queue levels – assume 3 queue levels

Waiting time: A = 1, B = 12, C = 8, D = 8, E = 1

Average waiting time = (8 + 12 + 8 + 8 + 0)/5 = 36/5 = 7.2

Turnaround times (Tr): A = 4, B = 18, C = 12, D = 13, E = 3

Average turnaround time = (4 + 18 + 12 + 13 + 3)/5 = 50/5 = 10.0

Tr/Ts: A = 4/3 = 1.33, B = 18/6 = 3, C = 12/4 = 3, D = 13/5 = 2.6, E = 3/2 = 1.5

Average Tr/Ts = (1.33 + 3 + 3 + 2.6 + 1.5)/5 = 11.43/5= 2.286 = 2.29

COP 4600: Intro To OS (Uni-processor Scheduling Page 66 © Dr. Mark Llewellyn

Feedback Techniques
• For the example set of processes assuming a time quantum of 1 and 3

queue levels with mandatory feedback, we would have the following

situation (green CPU cell indicates process ends):

Time

interval
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14

RQ0 A B C D E

RQ1 A B C D E

RQ2 A A B,A B,A C,B,A C,B,A D,C,B,A D,C,B,A D,C,B A,D,C B,A,D C,B

CPU A A B B C C D D E E A B C D

Time

interval
14-15 15-16 16-17 17-18 18-19 19-20

RQ0

RQ1

RQ2 D,C B,D B D B

CPU B C D B D B

COP 4600: Intro To OS (Uni-processor Scheduling Page 67 © Dr. Mark Llewellyn

Feedback

Feedback Techniques

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

D

E

Time quantum = 1 for all queue levels – assume 3 queue levels

Waiting time: A = 8, B = 12, C = 8, D = 8, E = 0

Average waiting time = (8 + 12 + 8 + 8 + 0)/5 = 36/5 = 7.2

Turnaround times (Tr): A = 11, B = 18, C = 12, D = 13, E = 2

Average turnaround time = (11 + 18 + 12 + 13 + 2)/5 = 56/5 = 11.2

Tr/Ts: A = 8/3 = 2.67, B = 18/6 = 3, C = 12/4 = 3, D = 13/5 = 2.6, E = 2/2 = 1.0

Average Tr/Ts = (2.67 + 3 + 3 + 2.6 + 1.0)/5 = 12.27/5= 2.45

COP 4600: Intro To OS (Uni-processor Scheduling Page 68 © Dr. Mark Llewellyn

Feedback Techniques

• There is a problem with this simple mechanism however, in that the

turnaround time of longer processes can grow at an alarming rate.

• Starvation is possible, if new jobs are entering the system

frequently.

• To compensate for this, the preemption times can be varying

depending on the queue (feedback level) in the following fashion:

– A process scheduled from queue RQ0 is allowed to execute for 1

time quantum and then is preempted.

– A process scheduled from queue RQ1 is allowed to execute for 2

time quanta.

– In general, a process scheduled from queue RQi is allowed to

execute for 2i time quanta. This is shown on the next two pages.

COP 4600: Intro To OS (Uni-processor Scheduling Page 69 © Dr. Mark Llewellyn

Feedback Techniques
• For the example set of processes assuming a time quantum of 2i

for each level of feedback and 3 levels of feedback queues, we

would have the following situation:

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

RQ0

(q = 1)
A B C D E

RQ1

(q = 2)
A B, A B C,B C D,C D, C E, D, C E, D E E

RQ2

(q = 4)
B B B C, B C, B C, B D, C, B D, C D, C D, C D

Dispatched A A B A C B B D E C C D D E B B B C D D

Finished –

leaves queue
A E B C D

COP 4600: Intro To OS (Uni-processor Scheduling Page 70 © Dr. Mark Llewellyn

Feedback

Feedback Techniques

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

D

E

Time quantum = 2i for all queue levels

Waiting times: A = 1, B = 9, C = 10, D = 9, E = 4

Average waiting time = (1 + 9 + 10 + 9 + 4)/5 = 33/5 = 6.6

Turnaround times (Tr): A = 4, B = 15, C = 14, D= 14, E = 6

Average turnaround time = (4 + 15 + 14 + 14 + 6)/5 = 53/5 = 10.7

Tr/Ts: A = 4/3 = 1.33, B = 15/6 = 2.5, C = 14/4 = 3.5, D = 14/5 = 2.8, E = 6/2 = 3

Average Tr/Ts = (1.33 + 2.5 + 3.5 + 2.8 + 3)/5 = 13.13/5 = 2.626 = 2.63

COP 4600: Intro To OS (Uni-processor Scheduling Page 71 © Dr. Mark Llewellyn

Overall Comparison Chart

Process Arrival

Time

Service Time

(TS)

A

0

3

B

2

6

C

4

4

D

6

5

E

8

2

Mean

FCFS Finish Time

Turnaround - TR

TR/TS

3

3

1.00

9

7

1.17

13

9

2.25

18

12

2.40

20

12

6.00

8.60

2.56

RR

(q = 1)

Finish Time

Turnaround - TR

TR/TS

4

4

1.33

18

16

2.67

17

13

3.25

20

14

2.8

15

7

3.5

10.8

2.71

RR

(q = 4)

Finish Time

Turnaround - TR

TR/TS

3

3

1.00

17

15

2.50

11

7

1.75

20

14

2.80

19

11

5.50

10.0

2.71

SPN Finish Time

Turnaround - TR

TR/TS

3

3

1.00

9

7

1.17

15

11

2.75

20

14

2.80

11

3

1.50

7.60

1.84

SRT Finish Time

Turnaround - TR

TR/TS

3

3

1.00

15

13

2.17

8

4

1.00

20

14

2,80

10

2

1.00

7.20

1.59

HRRN Finish Time

Turnaround - TR

TR/TS

3

3

1.00

9

7

1.17

13

9

2.25

20

14

2.80

15

7

3.5

8.00

2.14

Feedback

(q = 1)

Finish Time

Turnaround - TR

TR/TS

4

4

1.33

20

18

3.00

16

12

3.00

19

13

2.60

11

3

1.5

10.0

2.29

Feedback

(q = 2i)

Finish Time

Turnaround - TR

TR/TS

4

4

1.33

17

15

2.50

18

14

3.50

20

14

2.80

14

6

3.00

10.6

2.63

